the particles number through energy boundary in dt is dN
(E+dE)-------->|(E)-------->(E-dE)
boundary
the number of particles that pass through the energy boundary per unit of time,
JE=dNdt=dNdEdEdt
----------------->[(E+dE)------------------](E)--------------->
the change of particle number due to energy variation within energy interval [E,E+dE] per unit time if dE/dt<0.
dNdt=dN/dE(E+dE)d(E+dE)/dt−dN/dE(E)dE/dt=[dN/dE(E)+d2NdE2(E)dE]⋅[dE/dt+d2EdEdt(E)dE]−dN/dE(E)dE/dt=ddE(dNdE(E)dEdt)⋅dE
thus, dNdEdt=ddE(dNdE(E)dEdt)=dJEdE
the change of particle number due to motion
random walk and diffusion in one dimension
<--------o-------->
1/2 = p p =1/2
random walk, the probability of motion to left or right is same.
------------x-dx---------><|(x)---------|(x+dx)><--------x+2dx---------------
N(x) N(x+dx)
∫xx−dxdN/dxdx≡N(x−dx)
dN=1/2N(x−dx)−1/2N(x)+1/2N(x+dx)−1/2N(x+dx)=1/2(dx)2d2Ndx2
dN/dt=Dd2Ndx2
diffusion coefficient
D=1/2(dx)2dt
-------------
the number of particles that pass through the left position boundary
∫xx−dx1/2dN/dx(x)dx−∫x+dxx1/2dN/dx(x)dE≈1/2dNdx(x−dx)dx−1/2dNdx(x)dx=−1/2(dx)2dx(dN/dx)
dNdt=−1/2Dddx(dNdx)
-------------
The number of particles which cross area dA due to diffusion.
/|
/ |
/ d |
| A|
_______| |_________________________>
________|___________________________>
x
dN=JdAdt=1/2[∫xx−dxdN/dV(x)dxdA−∫x+dxxdN/dV(x)dxdA]≈1/2dN/dV(x−dx/2)dxdA−dN/dV(x+dx/2)dxdA=−1/2ddx(dNdV)(dx)2dA
Jx=dNdAdt=−(dx)22dtddx(dNdV)=−Ddndx
The change of particle number in the volume dxdA
dN=J(x)dAdt−J(x+dx)dAdt=−dJ/dxdAdtdx
dndt=ddx(Ddndx)
The number of particles which cross area dA due to convection.
dN=n(x)v(x)dtdA−n(x+dx)v(x+dx)dtdA=ddx(nv(x))dxdAdt
Jx=nvx
dndt=−ddx(nvx)
propagation equation
E ||
| ⬜dE
| dx
|--------------------> x
change of particle number due to diffusion
dndt=∑idxi(Ddndxi)
-----------
n=∫dn/dpdp
dndt=ddt(∫dn/dpdp)=∫d2ndtdpdp
ddx(Dddx(∫dn/dpdp))
invalid.
-----------
for the change of particle number due to motion,
substitute ddt→ddtdE and n→dndE.
diffusion
dndEdt=∑idxi(DdndEdxi)
convection
dndEdt=−ddx(dn/dEvx)
change of particle number due to energy variation
define dE/dt>0
dndEdt=−ddE(dndE(E)dEdt)
u=dn/dE
∂u∂t=∇⋅(D∇u)−∇⋅(u→v)−ddE(udEdt)
REFERENCE:
split equation more than one line
https://tex.stackexchange.com/questions/3782/how-can-i-split-an-equation-over-two-or-more-lines
fick's law
https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion
No comments:
Post a Comment