Y=(y1(x1,x2,x3),y2(x1,x2,x3),y3(x1,x2,x3))
dy1=dy1/dx1⋅dx1+…=3∑idy1dxi⋅dxi
dyi=3∑idy1dxidxi
dyi=(dyi/dx1dyi/dx2dyi/dx3)(dx1dx2dx3)
(dy1dy2dy3)=(dy1/dx1dy1/dx2dy1/dx3dy2/dx1dy2/dx2dy2/dx3dy3/dx1dy3/dx2dy3/dx3)(dx1dx2dx3)
\begin{align}
\frac{d\vec{y}}{d\vec{x}} =
[dy1/dx1dy1/dx2dy1/dx3dy2/dx1dy2/dx2dy2/dx3dy3/dx1dy3/dx2dy3/dx3]
\end{align}
2 double dot product of two tensor
→T:→U=∑i∑jTijUji
3 the dot product of a tensor with a vector
→T⋅→v=∑i→δi(∑jTijvj)
4 the dot product of a vector with a tensor
→v⋅T=∑i→δi(∑jTji)vj
5. unit tensor
∇⋅→I=0
→v⋅→I=→v
6. vector dot gradient of tensor
→A⋅∇⋅→T=∇⋅(→Acdot→T)−→T:∇→A
REFERENCE:
http://cs231n.stanford.edu/vecDerivs.pdf
http://www.polymerprocessing.com/notes/root92a.pdf
difference between matrix,bmatrix,pmatrix,vmatix,Vmatrix
https://math-linux.com/latex-26/faq/latex-faq/article/how-to-write-matrices-in-latex-matrix-pmatrix-bmatrix-vmatrix-vmatrix
Resource
The Poor Man’s Introduction to Tensors
No comments:
Post a Comment