Processing math: 100%

Labels

Saturday, September 22, 2018

Some operation about vector and tensor

derivative of a vector

Y=(y1(x1,x2,x3),y2(x1,x2,x3),y3(x1,x2,x3))

dy1=dy1/dx1dx1+=3idy1dxidxi

dyi=3idy1dxidxi


dyi=(dyi/dx1dyi/dx2dyi/dx3)(dx1dx2dx3)


(dy1dy2dy3)=(dy1/dx1dy1/dx2dy1/dx3dy2/dx1dy2/dx2dy2/dx3dy3/dx1dy3/dx2dy3/dx3)(dx1dx2dx3)


\begin{align}
\frac{d\vec{y}}{d\vec{x}} =
[dy1/dx1dy1/dx2dy1/dx3dy2/dx1dy2/dx2dy2/dx3dy3/dx1dy3/dx2dy3/dx3]

\end{align}

2 double dot product of two tensor
T:U=ijTijUji


3 the dot product of a tensor with a vector
Tv=iδi(jTijvj)


4 the dot product of a vector with a tensor
vT=iδi(jTji)vj

5. unit tensor 
I=0
vI=v

6. vector dot gradient of tensor
AT=(AcdotT)T:A



No comments:

Post a Comment