propagation equation
∂f∂t+∇⋅(C→Vswf−K⋅∇f)−13p2∂(p3Vsw⋅∇f)∂p=0
C=−1/3∂lnf∂lnp
stream current density
J=CVswf−K⋅∇f
K=[krrkrθkrϕkθrkθθkθϕkϕrkϕθkϕϕ]
krr=k∥cos2(ψ)+k⊥,rsin2(ψ)
tanψ=r∗Ω/Vsw
∇=ˆr∂∂r+ˆθr∂∂θ+ˆϕrsin(θ)∂∂ϕ
The dot product of a tensor with a vector is:
A⋅B=i(A11B1+A12B2+A13B3)+j(A21B1+A22B2+A23B3)+k(A31B1+A32B2+A33B3)
force-field solution
Assuming the particle distribution function f is isotropic and the solar wind velocity is →Vsw=Vswˆr.
∇f=[∂f∂rˆr,0,0]
K⋅∇f=ˆrkrr∂f∂r
if k∥=k⊥,r=k, then krr=k.
let J in eq ??? equals zero,
1/3pVsw∂f∂p+k∂f∂r=0
solution of this equation
characteristic equation:
dp1/3pVsw=drk
.
f is constant along the trajectories in the phase space which satisfy the characteristic equation.
assuming k=βk1(r)k2(p)
∫βk2(p)dpp=∫Vswdr3k1(r).
β=v=p/E=√(E2−m2)/(E2)=√(1−m2/E2)
when E=T+m≫m or T≫0, β=1.
example: T=m ⇒ β=√(1−122)≈0.866.
if k2(p)=p and T>m, eq ??? becomes
∫dp=∫Vswdr3k1(r)≡ϕ.
curve: p+c=ϕ
f=F(c)=F(p−ϕ)??
f=F(p1−ϕ1)=F(p2−ϕ2)??
f is constant along the curve. This indicates that p1−ϕ1(r1)=c,p2−ϕ2(r2)=c
.
Finally we get
p2=p1+ϕ2(r2)−ϕ1(r1).
p2=p1+ϕ(r2)−ϕ(r1).
redefine ϕ=∫r0Vswdr3k1(r) and f(r=0,p)=f(r,p2)
f=dNd3rd3p=dNdVp2dpdΩ=dNdAvdtdTdΩp2dp/dT=J/(p2)
dp/dT=1/v
J(T)=p2f
J(T1)p21=J(T2)p22=J(T2)(p1+ϕ)2
Finally, we get the force-field solution ???.
We can also directly integrate the ???
∫p2p1dp=∫r2r1Vswdr3k1(r)≡ϕ.
REFERENCE
Spherical Coordinateswww.cpp.edu/~ajm/materials/delsph.pdf
Tensor
www.polymerprocessing.com/notes/root92a.pdf
force-field modulation
A MONTE CARLO APPROACH FOR THE SOLAR MODULATION
No comments:
Post a Comment