Processing math: 100%

Labels

Friday, September 14, 2018

Force-field solution to solar modulation


propagation equation


ft+(CVswfKf)13p2(p3Vswf)p=0


C=1/3lnflnp

stream current density
J=CVswfKf


K=[krrkrθkrϕkθrkθθkθϕkϕrkϕθkϕϕ]


krr=kcos2(ψ)+k,rsin2(ψ)
tanψ=rΩ/Vsw

=ˆrr+ˆθrθ+ˆϕrsin(θ)ϕ
The dot product of a tensor with a vector is:
AB=i(A11B1+A12B2+A13B3)+j(A21B1+A22B2+A23B3)+k(A31B1+A32B2+A33B3)






force-field solution


Assuming the particle distribution function f is isotropic and the solar wind velocity is Vsw=Vswˆr.

f=[frˆr,0,0]

Kf=ˆrkrrfr


if k=k,r=k, then krr=k.

let J in eq ??? equals zero,
1/3pVswfp+kfr=0


solution of this equation

characteristic equation:
dp1/3pVsw=drk
.
f is constant along the trajectories in the phase space which satisfy the characteristic equation.

assuming k=βk1(r)k2(p)
βk2(p)dpp=Vswdr3k1(r).


β=v=p/E=(E2m2)/(E2)=(1m2/E2)
when E=T+mm or T0, β=1.

example: T=m β=(1122)0.866.



if k2(p)=p and T>m, eq ??? becomes
dp=Vswdr3k1(r)ϕ.

curve: p+c=ϕ

f=F(c)=F(pϕ)??

f=F(p1ϕ1)=F(p2ϕ2)??


f is constant along the curve. This indicates that p1ϕ1(r1)=c,p2ϕ2(r2)=c
.

Finally we get
p2=p1+ϕ2(r2)ϕ1(r1).

p2=p1+ϕ(r2)ϕ(r1).


redefine ϕ=r0Vswdr3k1(r) and f(r=0,p)=f(r,p2)

f=dNd3rd3p=dNdVp2dpdΩ=dNdAvdtdTdΩp2dp/dT=J/(p2)
dp/dT=1/v

J(T)=p2f

J(T1)p21=J(T2)p22=J(T2)(p1+ϕ)2


Finally, we get the force-field solution ???.



We can also directly integrate the ???
p2p1dp=r2r1Vswdr3k1(r)ϕ.


REFERENCE

Spherical Coordinates
www.cpp.edu/~ajm/materials/delsph.pdf
Tensor
www.polymerprocessing.com/notes/root92a.pdf
force-field modulation
A MONTE CARLO APPROACH FOR THE SOLAR MODULATION


No comments:

Post a Comment