SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python.
online sympy https://www.sympygamma.com/
from sympy import * #define variable x = Symbol('x') y = Symbol('y') a, b, c = symbols('a,b,c') #expand expand((x + y)**3) expand(sin(x+y),trig=True) #simplify simplify((x + x*y) / x) #limit #limit(function, variable, point) limit(sin(x)/x,x,0) limit(1/x, x, oo) limit( (sin(x+y) - sin(x))/y,y,0) #diff #diff(func,var,n) diff(sin(x),x) diff(sin(x),x,2) #taylor series #series(expr, var) series(sin(x),x) #integrate integrate(x**2,x) integrate(2*x + sinh(x), x) integrate(exp(-x**2)*erf(x), x) ----- integrate(x**3, (x, -1, 1)) integrate(exp(-x), (x, 0, oo)) integrate(exp(-x**2), (x, -oo, oo)) #factor factor(x**2-1) #solve equation solve(x**4 - 1, x) solve([x + 5*y - 2, -3*x + 6*y - 15], [x, y]) #matrix A = Matrix([[1,x], [y,1]]) #dsolve f, g = symbols('f g', cls=Function) dsolve(f(x).diff(x, x) + f(x), f(x))
from sympy import symbols integrate
a,b,k=symbols('a,b,k',real=True,positive=True)
f=k**2/(k**2+a**2)/(1+k**2*b**2)**(5/6)
g=integrate(f,(k,-oo,oo))
REFERENCE
https://wizardforcel.gitbooks.io/scipy-lecture-notes/content/15.html
REFERENCE
https://wizardforcel.gitbooks.io/scipy-lecture-notes/content/15.html
No comments:
Post a Comment