transport equation
∇⋅(D∇Ne)+∂∂E(dEdtNe)+Qe=∂Ne∂t
energy change of particle
E(t+dt)=E(t)+dEdtdt
dt=dEdE/dt
∫t2t1dt=∫E2E1dEdE/dt
if dE/dt≡−b(E)=−aE2 and t2>t1
t2−t1=1a[1E2−1E1]
E(t1)=E(t2)1−a(t2−t1)E(t2)
and
E(t2)=E(t1)1+a(t2−t1)E(t1)
green function
Ge(→r,→r′,E,E′,t,t′)=1[π4f(E,E′)]3/2b(E)exp[−(→r′−→r)24f(E,E′)]⋅δ(t′−t+h(E,E′))
f(E,E′)=∫EE′D(u)dudu/dt and h(E,E′)=∫EE′dudu/dt
δ function
δ(g(x))=∑iδ(x−xi)|g′(xi)|
t>t′ the time axis ------t'---------t----->
δ(t′−t+h)
h=∫EE′dEdE/dt=−1a[1E′−1E]
g(E′)=t′−t+h=t′−t+1a[1E−1E′]
g(E′)=t′−t+1a[1E−1E′]=0
g′(E′)=1aE′2
The solution of transport equation is given by
Ne(→r,E,t)=∫∫∫d→r′dE′dt′Ge(→r,→r′,E,E′,t,t′)Qe(→r′,E′,t′)=∫dt′∫d→r′b(E′)b(E)Qe(→r′,E′,t′)(4πf(E,E′))3/2exp[−(→r′−→r)24f(E,E′)]
In this equation, the E′ is given by E′=E1−a(t−t′)E.
In fact, the solution N(→r,E,t)=∫dt′∫d→r′b(E′)b(E)Q(→r′,E′,t′)(4πf(E,E′))3/2exp[−(→r′−→r)24f(E,E′)]
is general. It doesn't depend on the assumption of the form of energy loss.
if we expand δ(t′−t+∫EE′dEdE/dt) directly, we can get the general solution. In this case E′ is a function of E and t−t′.
The integration of spatial part
To simplify our mark, we let the →r=0. It means we take the position of observer as original point.
if the spatial part of source term Q is q(r′), the integration for spatial part is
SI=∫d→r′q(→r′)exp(−r′24f(E,E′))=∫q(→r′)exp(−r′24f(E,E′))r′2dr′dΩ
Assume the source locates at →rs and the position with respect to source is →r0 .
For the geometry, one can refer the figure 1 in the paper https://arxiv.org/pdf/1009.0894.pdf.
Note that the →rs is fixed, f(→r′)=f(→r0) and d→r′=d→r0.
If the particles are homogeneous injected by the sphere surface with radius R, the source term becomes q(→r′)=14πR2δ(r0−R).
I mark 4f(E,E′) as L.
SI⋅4πR2=∫exp(−[r2s+r20−2rsr0sin(θ)cos(ϕ)]/L)r20δ(r0−R)dr0sin(θ)dθdϕ=∫R2exp(−[r2s+R2]/L)⋅exp(2rsRsin(θ)cos(ϕ)/L)sin(θ)dθdϕ
let 2rsR/L=c.
how to compute the integration ∫2π0∫π0exp(csin(θ)cos(ϕ))sin(θ)dθdϕ ?
The author of paper On the point-source approximation of nearby cosmic ray sources says the integration is 4π/csinh(c). I checked this result by numerical integration with python.
#for example import scipy.integrate as integrate from math import * def f(x,y): return exp(-10*sin(x)*cos(y))*sin(x) integrate.nquad(f,[[0,pi],[0,2*pi]]) #output (13839.636596576718, 4.0309916130354395e-05) 4*pi/10*sinh(10) #output 13839.63659657671
∫2π0∫π0exp(csin(θ)cos(ϕ)=4πcsinh(c)
SI=2rsRexp(−r2s+R24f(E,E′))sinh(rsR2f(E,E′)
N(→r,E,t)=∫dt′b(E′)b(E)Q(t′,E′)14π3/2f1/2rsRexp(−r2s+R24f(E,E′))sinh(rsR2f(E,E′))
∫tt′dt=∫EE′dEdE/dt
REFERENCE
solution
On the point-source approximation of nearby cosmic ray sources
numerical integration
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
Dirac function
https://en.wikipedia.org/wiki/Dirac_delta_function
Others
On the contribution of nearby sources to the observed cosmic-raynuclei
No comments:
Post a Comment