the particles number through energy boundary in $dt$ is $dN$
(E+dE)-------->|(E)-------->(E-dE)
boundary
the number of particles that pass through the energy boundary per unit of time,
\[ J_E = \frac{dN}{dt} = \frac{dN}{dE}\frac{dE}{dt} \]
----------------->[(E+dE)------------------](E)--------------->
the change of particle number due to energy variation within energy interval $[E,E+dE]$ per unit time if $dE/dt<0$.
\begin{equation}
\begin{split}
\frac{dN}{dt} & = dN/dE(E+dE)d(E+dE)/dt - dN/dE(E)dE/dt \\
& = [dN/dE(E)+\frac{d^2N}{dE^2}(E) dE] \cdot [dE/dt + \frac{d^2E}{dEdt}(E)dE ] - dN/dE(E)dE/dt \\
& = \frac{d}{dE}(\frac{dN}{dE}(E)\frac{dE}{dt}) \cdot dE
\end{split}
\end{equation}
thus, \[ \frac{dN}{dEdt} = \frac{d}{dE}(\frac{dN}{dE}(E)\frac{dE}{dt}) = \frac{dJ_E}{dE} \]
the change of particle number due to motion