Labels

Friday, May 15, 2020

Chapman-Enskog Expansion

Boltzman equation
ft+pmf+Fpf=(δfδt)coll

Assume f can be expansed as 
f=f0+ϵf1+ϵ2f2+.

If we assume hydrodynamic parameters such as number density, bulk velocity and temperature are expressed through f0 only, 
e.g. n=f0d3v,
otherwise, the defintion for density tells us 
n=fd3v,
so we get the integration 
\[ \int f_{k} d^3v = 0, \,for\, k>=1 .\ ]
Applying the same argument to bulk density and temperature, we get 
fkd3v=vfkd3v=(vu)2fkd3v=0,fork1.
  

Reference:

No comments:

Post a Comment