http://www.astro.uu.se/~hoefner/astro/teach/apd_files/apd_SNR_dyn.pdf
Size distribution of supernova remnants and the interstellarmedium: the case of M 33
https://www.astro.umd.edu/~richard/ASTR680/supernova%20remnants.pdf
https://heasarc.gsfc.nasa.gov/docs/objects/snrs/snrstext.html
Interested in particle astrophysics and plasma astrophysics. This blog is my research/private notebook.
Wednesday, April 22, 2020
TERMUX INSTALL MATPLOTLIB error: ft2build.h / fthread.h
error: can not find ft2build.h
ft2build.h in the below directory: /data/data/com.termux/files/usr/include/freetype2
ft2build.h in the below directory: /data/data/com.termux/files/usr/include/freetype2
solution:
Reference:
Monday, April 20, 2020
From pitch angle diffusion to spatial diffusion coefficient
\[ dp/dt = qv/c \times (B_0 + \delta B) \]
\[dp_{\parallel}/dt = q/c (v_{\perp} \times \delta B) \]
\[p_{\perp} = \mu p \]
\[ d\mu/dt = q/(pc)v(1-\mu^2)^{1/2} \delta B \cos(\Omega t -kx +\psi) \]
\[ \delta B(x,t) = \delta B \cos(\Omega t -kx +\psi) \]
Averaging over random phase of the waves $\psi$,
\[ \int_0^{2\pi} \cos^2\psi d\psi = \pi\]
\[\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \]
in the frame in which the wave is at rest, we can write $x=\mu v t$,
\[ \langle \delta \mu (t')\delta \mu (t'') \rangle_{\psi} = \frac{q^2v^2(1-\mu^2)(\delta B)^2}{2c^2p^2} \cos[(\Omega -kv\mu)(t-t'')] \].
Integrating over time,
\[ \langle \delta \mu (t')\delta \mu (t'') \rangle_{t} = \frac{q^2v^2(1-\mu^2)(\delta B)^2}{2c^2p^2} \int dt' \int dt'' \cos[(\Omega -kv\mu)(t-t'')] \\
= \frac{q^2 v(1-\mu^2)(\delta B)^2}{c^2 p^2 \mu} \delta(k-\Omega/(v\mu)) \delta t \].
\[dp_{\parallel}/dt = q/c (v_{\perp} \times \delta B) \]
\[p_{\perp} = \mu p \]
\[ d\mu/dt = q/(pc)v(1-\mu^2)^{1/2} \delta B \cos(\Omega t -kx +\psi) \]
\[ \delta B(x,t) = \delta B \cos(\Omega t -kx +\psi) \]
Averaging over random phase of the waves $\psi$,
\[ \int_0^{2\pi} \cos^2\psi d\psi = \pi\]
\[\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \]
in the frame in which the wave is at rest, we can write $x=\mu v t$,
\[ \langle \delta \mu (t')\delta \mu (t'') \rangle_{\psi} = \frac{q^2v^2(1-\mu^2)(\delta B)^2}{2c^2p^2} \cos[(\Omega -kv\mu)(t-t'')] \].
Integrating over time,
\[ \langle \delta \mu (t')\delta \mu (t'') \rangle_{t} = \frac{q^2v^2(1-\mu^2)(\delta B)^2}{2c^2p^2} \int dt' \int dt'' \cos[(\Omega -kv\mu)(t-t'')] \\
= \frac{q^2 v(1-\mu^2)(\delta B)^2}{c^2 p^2 \mu} \delta(k-\Omega/(v\mu)) \delta t \].
Tuesday, April 14, 2020
Chromebook linux beta
Open Chrome OS developer shell Ctrl + Alt + T
vmc list
vmc start termina
check for default Linux container
lxc list
If the penguin container is listed, you can try manually starting it
logout
vmc container termina penguin
destroy a virtual machine
vmc list
vmc start termina
check for default Linux container
lxc list
If the penguin container is listed, you can try manually starting it
logout
vmc container termina penguin
destroy a virtual machine
Sunday, April 12, 2020
Integration to sum
The definite integral of a continuous function $f$ over the interval $[a,b]$, denoted by $\int_a^b f(x) dx$, is the limit of a Riemann sum as the number of subdivisions approach infinity.
\[ \int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n \delta x \cdot f(x_i) \]
where $\delta x = (b-a)/n$, and $x_i = a+\delta x \cdot i$.
Example
\[\int_{\pi}^{2\pi} cos(x)dx \]
\[\delta x = (b-a)/n = (2\pi-\pi)/n = pi/n\]
\[x_i = a + \delta x \cdot i = \pi + \pi/n \cdot i \]
Therefore
\[\int_{\pi}^{2\pi} \cos(x)dx = \lim_{n\to \infty}\sum_{i=1}^{n} \frac{\pi}{n}\cdot \cos(\pi+\frac{\pi i}{n}) \]
Reference:
https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-3/a/definite-integral-as-the-limit-of-a-riemann-sum
\[ \int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n \delta x \cdot f(x_i) \]
where $\delta x = (b-a)/n$, and $x_i = a+\delta x \cdot i$.
Example
\[\int_{\pi}^{2\pi} cos(x)dx \]
\[\delta x = (b-a)/n = (2\pi-\pi)/n = pi/n\]
\[x_i = a + \delta x \cdot i = \pi + \pi/n \cdot i \]
Therefore
\[\int_{\pi}^{2\pi} \cos(x)dx = \lim_{n\to \infty}\sum_{i=1}^{n} \frac{\pi}{n}\cdot \cos(\pi+\frac{\pi i}{n}) \]
Reference:
https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-3/a/definite-integral-as-the-limit-of-a-riemann-sum
Monday, April 6, 2020
Thursday, April 2, 2020
Math resources
residue theorem
https://math.mit.edu/~jorloff/18.04/notes/topic8.pdf
A table of integrals of exponential integral - NIST Page
https://nvlpubs.nist.gov/nistpubs/jres/73B/jresv73Bn3p191_A1b.pdf
Ten lessons I should have been taught. Lecture delivered by Gian-Carlo Rota at MIT on April 20, 1996, on occasion of the Rotafest.
Gian-Carlo Rota
USEFUL VECTOR AND TENSOR OPERATIONS
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118127575.app1
https://math.mit.edu/~jorloff/18.04/notes/topic8.pdf
A table of integrals of exponential integral - NIST Page
https://nvlpubs.nist.gov/nistpubs/jres/73B/jresv73Bn3p191_A1b.pdf
Ten lessons I should have been taught. Lecture delivered by Gian-Carlo Rota at MIT on April 20, 1996, on occasion of the Rotafest.
Gian-Carlo Rota
USEFUL VECTOR AND TENSOR OPERATIONS
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118127575.app1
// with very good examples
Riccati equation
\[ dy/dx = a(x) + b(x)y + c(x)y^2 \]
quasi-linear newton Broyden’s Method
Table of Approximations for Derivatives // important for finite difference
SDE
pde
laptops
HP Laptop - 15t $579 min 480$
10th Gen Intel® Core™ i7 processor
2019 Dell Inspiron 14" Laptop Computer| 10th Gen Intel Quad-Core i5 1035G4 $398
HP 17.3" Laptop - 10th Gen Intel Core i5-10210U (1600 x 900) Touchscreen 12G RAM 499
HP 17.3" HD+ Laptop, Intel Core i7-8565U 1600*900 8GB Memory, 256GB SSD 569
AMD 4700, 8G, 256 NvME 15.6'', 1920*1080
Subscribe to:
Posts (Atom)